Long-term fate of neural precursor cells following transplantation into developing and adult CNS.
نویسندگان
چکیده
Successful strategies for transplantation of neural precursor cells for replacement of lost or dysfunctional CNS cells require long-term survival of grafted cells and integration with the host system, potentially for the life of the recipient. It is also important to demonstrate that transplants do not result in adverse outcomes. Few studies have examined the long-term properties of transplanted neural precursor cells in the CNS, particularly in non-neurogenic regions of the adult. The aim of the present study was to extensively characterize the fate of defined populations of neural precursor cells following transplantation into the developing and adult CNS (brain and spinal cord) for up to 15 months, including integration of graft-derived neurons with the host. Specifically, we employed neuronal-restricted precursors and glial-restricted precursors, which represent neural precursor cells with lineage restrictions for neuronal and glial fate, respectively. Transplanted cells were prepared from embryonic day-13.5 fetal spinal cord of transgenic donor rats that express the marker gene human placental alkaline phosphatase to achieve stable and reliable graft tracking. We found that in both developing and adult CNS grafted cells showed long-term survival, morphological maturation, extensive distribution and differentiation into all mature CNS cell types (neurons, astrocytes and oligodendrocytes). Graft-derived neurons also formed synapses, as identified by electron microscopy, suggesting that transplanted neural precursor cells integrated with adult CNS. Furthermore, grafts did not result in any apparent deleterious outcomes. We did not detect tumor formation, cells did not localize to unwanted locations and no pronounced immune response was present at the graft sites. The long-term stability of neuronal-restricted precursors and glial-restricted precursors and the lack of adverse effects suggest that transplantation of lineage-restricted neural precursor cells can serve as an effective and safe replacement therapy for CNS injury and degeneration.
منابع مشابه
ADAM Gene Expression in The Adult CNS and Genetic Aberrations in Cancer Cells
ADAM metalloprotease-disintegrins share a common modular structure of functional domains for proteolytic, cell adhesion, and signaling interactions. The metalloprotease domain of oughly half of the known ADAMs contain an intact consensus metzincin catalytic site, and they are thus thought to function as active metalloproteases. The types of interactions mediated by ADAMs are expressly conspicu...
متن کاملHarvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملIsolation, characterization, and use of stem cells from the CNS.
The nervous system of adult mammals, unlike the rest of the organs in the body, has been considered unique in its apparent inability to replace neurons following injury. However, in certain regions of the brain, neurogenesis occurs postnatally and continues through adulthood. The nature, fate, and longevity of cells undergoing proliferation within the CNS are unknown. These cells are increasing...
متن کاملLong term survival and limited migration of genetically modified monocytes/macrophages grafted into the mouse brain
In mammals, myeloid progenitors infiltrate the developing central nervous system (CNS), through the immature blood-brain barrier (BBB), the ventricular layer or the pial surface migrate and give rise to resident microglia. In the mature brain, however, the BBB hampers such recruitment from the blood-stream and long-term establishment of blood borne myeloid cells in the CNS thus appears at best ...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 142 1 شماره
صفحات -
تاریخ انتشار 2006